Главная » Лечение антибиотиками

Основные механизмы действия антибиотиков

Действие антибиотиков: основные факты

Антибиотики — этот вид лекарственных средств, который занимает особенное место, так как действие их уникально и своеобразно. Перспектива принимать антибиотики пугает и волнует многих больных, которым врач выдает рецепт на покупку этих препаратов. Антибактериальные средства вызывают большое количество вопросов и окружены различными мифами. Так каково же действие антибиотиков и благодаря чему они оказывают свой противомикробный эффект?

Антибиотики, что это за лекарства

Антибиотики — это группа лекарственных средств, которые подавляют рост живых бактерий или полностью их уничтожают. Таким образом, это единственная группа препаратов, проникающих в организм человека, но вступающих во взаимодействие не с ним, а с микроорганизмами, которые в нем находятся. Все остальные лекарства оказывают свои эффекты на различные клетки самого человеческого организма и изменяют их работу. В этом заключается уникальное действие антибиотиков.

Свой эффект антибиотики оказывают только на бактерии, поэтому вирусные инфекции антибактериальными препаратами не лечатся. Первые из антибактериальных препаратов были получены натуральным путем в лабораторных условиях. Однако большая часть групп антибиотиков относится к синтетическим, то есть получают их искусственно.

История открытия антибиотиков


Антибиотики были синтезированы в 30-х годах XX века. Первым из существующих на сегодняшний день антибактериальных препаратов был пенициллин. Александр Флеминг, получивший впоследствии Нобелевскую премию, обнаружил прекращение роста колонии стафилококков при контакте с обычным куском заплесневелого хлеба. Он доложил о своем эксперименте на заседании Медицинского университетского клуба в Лондоне, однако коллеги встретили эту новость достаточно холодно.

Лишь через 10 лет пенициллин был выделен как вещество в чистом виде, а массовое его применение началось в период Второй мировой войны. Тогда количество жизней, которые были спасены этим антибиотиком, невозможно было подсчитать. Именно открытие пенициллина послужило началом новой эпохи в медицинской науке.

Действие антибиотиков, основные механизмы

Действие антибиотиков различно для отдельных групп представителей этих лекарственных средств. Одни антибактериальные средства обладают бактерицидным действием, то есть они нарушают обмен веществ у микроорганизмов, что приводит к их непосредственной гибели. Другие препараты блокируют процесс размножения бактерий, в результате чего их количество постепенно снижается из-за отсутствия потомства. Это бактериостатический механизм действия антибиотиков.

Точки приложения антибактериальных средств также различаются для каждой группы представителей. Это дает возможность доктору выбрать подходящий антибиотик для конкретного пациента. Вот некоторые из них:

  • нарушение синтеза клеточной стенки,
  • нарушение синтеза различных белков,
  • действие на синтез нуклеиновых кислот, входящих в состав ДНК микроорганизмов,
  • действие на мембрану клетки.

Человеку, не имеющему отношения к медицине, эти термины мало о чем говорят. Однако именно разнообразие механизмов действия делает антибиотики эффективными в отношении большого количества инфекционных заболеваний.

Спектр действия антибиотиков


Спектр действия антибиотиков — это совокупность микроорганизмов, которые сохраняют чувствительность к антибиотикам. То есть, говоря обычным языком, это группы микробов, которые погибнут под действием этого препарата.

Отдельные группы антибактериальных средств действуют на очень большое количество бактерий, в таком случае говорят, что спектр действия этих антибиотиков — широкий. Доктор назначает таких лекарства чаще всего в двух ситуациях:

  • он впервые видит больного на приеме,
  • пациент только что поступил в стационар и еще не сдал анализ на чувствительность к антибиотикам, либо результат анализа еще неизвестен.

Назначая препарат широкого спектра врач старается охватить всех возможных возбудителей предполагаемого инфекционного заболевания.

Узкий спектр действия антибиотиков означает, что этим препаратом можно лечить какое-то конкретное заболевание и уничтожает он только узкую группу возбудителей инфекции. Эти препараты хороши тогда, когда врач точно уверен в диагнозе или получил результат анализа на чувствительность к антибиотикам, где указан возбудитель и антибактериальный препарат, который максимально остановил его рост.

Выделяют следующие группы антибиотиков по спектру их антимикробного действия:

  • Антибактериальные препараты — действуют на различные бактерии.
  • Противогрибковые антибиотики — действуют на возбудителей грибковых инфекций (Candida).
  • Противопротозойные антибиотики — действуют на простейшие микроорганизмы (хламидия, микоплазма и т. д.).
  • Противоопухолевые антибиотики — действуют на раковые клетки.
  • Отдельная группа: противосифилитические, противолепрозные, противотуберкулезные препараты. К ним относятся антибиотики, которыми лечат только эти конкретные заболевания.

Таким образом, понятие «спектр действия антибиотиков» дает возможность врачу выбрать правильную тактику лечения и не терять драгоценное время зря.

Классификация антибиотиков по механизму действия

Рисунок 4 – Механизмы действия антибиотиков

Механизмы действия различных групп #946;-лактамных антибиотиков. Общим фрагментом в химической структуре БЛА является #946;-лактамное кольцо, именно с его наличием связана микробиологическая активность этих препаратов.

Мишенью действия БЛА в микробной клетке являются ферменты транс- и карбоксипептидазы, участвующие в синтезе основного компонента наружной мембраны как грамположительных, так и грамотрицательных микроорганизмов – пептидогликана.

Благодаря способности связываться с пенициллином (и другими БЛА) эти ферменты получили второе название – пенициллинсвязывающие белки (ПСБ). Молекулы ПСБ жестко связаны с цитоплазматической мембраной микробной клетки, они осуществляют образование поперечных сшивок.

Связывание БЛА с ПСБ ведет к инактивации последних, прекращению роста и последующей гибели микробной клетки. Таким образом, уровень активности конкретных БЛА в отношении отдельных микроорганизмов в первую очередь определяется их аффинностью (сродством) к ПСБ. Для практики важно то, что чем ниже аффинность взаимодействующих молекул, тем более высокие концентрации антибиотика требуются для подавления функции фермента.

Однако для взаимодействия с ПСБ антибиотику необходимо проникнуть из внешней среды через наружные структуры микроорганизма. У грамположительных микроорганизмов капсула и пептидогликан не являются существенной преградой для диффузии БЛА. Практически непреодолимой преградой для диффузии БЛА является липополисахаридный слой грамотрицательных бактерий. Единственным путем для диффузии БЛА служат пориновые каналы внешней мембраны, которые представляют собой воронкообразные структуры белковой природы, и являются основным путем транспорта питательных веществ внутрь бактериальной клетки.

Механизм действия препаратов группы пенициллинов и цефалоспоринов. Пенициллины (и все другие #946;-лактамы) обладают бактерицидным эффектом. Мишень их действия – пенициллиносвязывающие белки (ПСБ) бактерий, которые выполняют роль ферментов на завершающем этапе синтеза пептидогликана – биополимера, являющегося основным компонентом клеточной стенки бактерий. Блокирование синтеза пептидогликана приводит к гибели бактерии.

Поскольку пептидогликан и пенициллиносвязывающие белки отсутствуют у млекопитающих, специфическая токсичность в отношении макроорганизма для #946;-лактамов нехарактерна.

Механизм действия препаратов группы карбопенемы. Карбапенемы оказывают мощное бактерицидное действие, обусловленное нарушением образования клеточной стенки бактерий. По сравнению с другими #946;-лактамами карбапенемы способны быстрее проникать через наружную мембрану грамотрицательных бактерий и, кроме того, оказывать в отношении них выраженный постантибиотический эффект (ПАЭ).

Механизм действия препаратов группы монобактамы. Азтреонам обладает бактерицидным эффектом, который связан с нарушением образования клеточной стенки бактерий.

Группа аминогликозидов. Аминогликозиды оказывают бактерицидное действие, которое связано с нарушением синтеза белка рибосомами. Степень антибактериальной активности аминогликозидов зависит от их максимальной (пиковой) концентрации в сыворотке крови. При совместном использовании с пенициллинами или цефалоспоринами наблюдается синергизм в отношении некоторых грамотрицательных и грамположительных аэробных микроорганизмов.

Группа тетрациклинов. Тетрациклины обладают бактериостатическим эффектом, который связан с нарушением синтеза белка в микробной клетке.

Группа макролидов. Антимикробное действие макролидов обусловлено нарушением синтеза белка на этапе трансляции в клетках чувствительных микроорганизмов. Молекула антибиотика способна обратимо связываться с каталитическим пептидил-трансферазным центром (P-site) рибосомальной 50S-субъединицы и вызывать отщепление комплекса пептидил-тРНК (представляющего собой растущую пептидную цепь) от рибосомы. При этом нарушается цикличность последовательного присоединения пептидной цепи к пептидил-трансферазному центру (P-site) и акцепторному аминоацил-тРНК-центру (A-site) 50S-субъединицы, то есть ингибируются реакции транслокации и транспептидации (рисунок 5).

M - точка приложения действия макролидов

Рисунок 5 – Механизм синтеза белка в рибосоме бактериальной клетки. (по P. Vanuffel, C. Cocito (1996))

В результате приостанавливается процесс формирования и наращивания пептидной цепи. Связывание макролидов с 50S-субъединицей возможно на любой стадии рибосомального цикла. Выявлено, что 14- и 16-членные макролиды отличаются по особенностям связывания с различными доменами пептидил-трансферазного центра (рисунок 6).

Связывание с 50S-субъединицами рибосом характерно также для антибиотиков других групп: линкосамиды, стрептограмины. Наиболее перспективным является комбинированный препарат хинупристин/дальфопристин, обладающий in vitro высокой активностью против множественнорезистентных штаммов стафилококков и ванкомицинрезистентных E. faecium ) и хлорамфеникол. Несмотря на то, что по особенностям связывания с доменами пептидил-трансферазного центра данные антибиотики отличаются от макролидов, при одновременном назначении между ними возможна конкуренция и ослабление антимикробного эффекта.

Антибиотик Домены пептидал-транферазного центра

Фармакологическая группа - Противоопухолевые антибиотики

Препаратов - 459. торговых названий - 46

Описание

Первый противоопухолевый антибиотик — дактиномицин — был получен в 1963 году. В последующем скрининг продуктов жизнедеятельности микробов привел к открытию целого ряда эффективных химиотерапевтических противоопухолевых препаратов, являющихся продуктами разных видов почвенных грибов или их синтетическими производными.

В настоящее время из противоопухолевых антибиотиков наибольшее практическое применение имеют антрациклины (антрахиноновые соединения), блеомицин, относящийся к флеомицинам, дактиномицин, являющийся актиномицином, и митомицин — своеобразный антибиотик с алкилирующим механизмом действия.

Антрациклиновые антибиотики (даунорубицин, доксорубицин, идарубицин, карубицин и эпирубицин) относятся к наиболее эффективным противоопухолевым средствам.

Структурной основой антрациклиновых противоопухолевых антибиотиков является тетрагидротетраценхиноновый хромофор, состоящий из шестичленного алифатического и трех ароматических колец. В химическом отношении они отличаются друг от друга заместителями в хромофоре и наличием сахарных остатков.

Механизм цитотоксического действия антрациклиновых антибиотиков связан, главным образом, с ингибированием синтеза нуклеиновых кислот путем интеркаляции между парами азотистых оснований, нарушением вторичной спирализации ДНК за счет взаимодействия с топоизомеразой II, а также связыванием с липидами клеточных мембран, сопровождающимся изменением транспорта ионов и клеточных функций. Такой механизм обусловливает высокую антимитотическую активность при низкой избирательности действия. Антрациклиновые антибиотики оказывают также иммунодепрессивное (миелосупрессивное) и антибактериальное действие, однако в качестве антимикробных средств не применяются.

Антрациклиновые противоопухолевые антибиотики применяют при многих злокачественных новообразованиях — различных гематологических видах рака, саркомах мягких тканей, карциномах и других солидных опухолях. Спектр показаний к применению конкретного антибиотика определяется его химическим строением, индивидуальными фармакокинетическими и фармакодинамическими свойствами и степенью его изученности. Помимо терапевтического действия все противоопухолевые антрациклиновые антибиотики вызывают ряд побочных эффектов, обусловленных низкой избирательностью действия. Главным из этих эффектов является потенциально необратимая кумулятивная дозозависимая кардиотоксичность, которая предположительно обусловлена свободнорадикальным повреждением клеточных мембран миокарда. Антрациклиновые антибиотики обладают также эмбриотоксическими, мутагенными и тератогенными свойствами. Применение их в комбинации с другими противоопухолевыми средствами позволяет уменьшить дозы и снизить частоту и выраженность токсических эффектов.

Блеомицин представляет собой смесь различных гликопептидов, продуцируемых Streptomyces verticillus. Он также подавляет синтез нуклеиновых кислот (главным образом ДНК) и белка, индуцируя фрагментацию ДНК с последующим образованием свободных радикалов. Более активен на ранних стадиях опухолевого процесса, относительно мало угнетает костномозговое кроветворение, не оказывает существенного иммуносупрессивного действия. Применяют блеомицин главным образом при комбинированном лечении тестикулярных видов рака, карцином и лимфом. Так же как и другие противоопухолевые антибиотики, блеомицин вызывает ряд побочных эффектов, наиболее тяжелыми из которых являются анафилактический шок, респираторная токсичность и лихорадка.

Дактиномин, как и антрациклиновые антибиотики, встраивается между парами азотистых оснований, образуя стойкий комплекс с ДНК, и нарушает ДНК-зависимый синтез РНК. Применяют его в сочетании с хирургическим вмешательством, лучевой терапией и/или в комбинации с винкристином, циклофосфамидом и метотрексатом при лечении опухоли Вильмса, рабдомиосаркомы, хориокарцином и некоторых других видов опухолей. Основной дозозависимый токсический эффект дактиномицина — угнетение функции костного мозга, вплоть до развития апластической анемии.

Митомицин, в отличие от других противоопухолевых антибиотиков, проявляет свойства алкилирующего агента, вызывая избирательное ингибирование синтеза ДНК, а в высоких концентрациях и супрессию клеточной РНК и синтеза белка. Применяют его в качестве вспомогательного средства при лучевой терапии и в комбинации с другими противоопухолевыми средствами (в т.ч. и противоопухолевыми антибиотиками) при лечении диссеминированных аденокарцином различной локализации, хронического лимфо- и миелолейкоза. Основным побочным эффектом митомицина является тяжелая миелосупрессия с относительно поздним токсическим действием на все три ростковых элемента костного мозга.

Кроме названных антибиотиков противоопухолевой активностью обладает ряд средств, продуцентами которых являются различные актиномицеты (оливомицин, руфокромомицин, реумицин).

Препараты

Препаратов - 459 ;Торговых названий - 46

Источники: http://medaboutme.ru/zdorove/publikacii/stati/sovety_vracha/deystvie_antibiotikov_osnovnye_fakty/, http://studopedia.org/10-140175.html, http://pda.rlsnet.ru/fg_index_id_269.htm

Комментариев пока нет!

Ваше имя *
Ваш Email *

Сумма цифр внизу: код подтверждения